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Abstract. We examine the two canonical quasicrystal tilings for the icosahéthatiase from
the point of view of Meyer's theory of-duals. Using this we develop all the steps of an
algorithm for creating the vertex sets of these tilings by outward growth from a starting seed.

1. Introduction

In the projection method for quasilattices, points projected into physical (parallel) space are
accepted if their projections into window (perpendicular) space fall into a bounded region.
The coherent phase method proposed in [2] uses the almost periodicity of the quasilattice and
selected continuous characters on the physical space to dispose of all reference to window
space and to generate the points of the quasilattice by a systematic growth algorithm based
entirely in physical space.

In this paper we explore the coherent phase method in the context of the icosahedral
F-phase and the two canonical tilings associated with this phase. We introduce all the
concepts of the coherent phases method and then, utilizing the known windows of the
canonical tilings, determine a finite set of continuous characgtgren R3, indexed by
suitably selected pointa from reciprocal space, and a finite set of controlling parameters
¢ > 0, which completely specify the method for these two classes of tilings. As a result we
obtain a simple algorithm that generates the vertex sets of these tilings.

The method relies on two separate concepts. The first is Meyer’s theory of duality [1]
which associates to each quasilattiteappearing from the cut and project technique and
eache € R with 0 < ¢ < 2, ane-dual quasilatticeA® consisting of continuous characters
for which A is an approximate set of periods. The second, which is almost self-evident for
convex tilings, is the possibility of creating the quasilattice of vertices by outward growth
along sequences of edges of the tiling starting from some fixed starting vertex. We call this
amenability.

In section 2 we recall the definitions involved withduality and in section 3 we
introduce the concepts and terminology that we need for amenability. In section 4 we
illustrate how duality and amenability are combined into the coherent phases method by
illustrating it on the simple one-dimensional Fibonacci quasilattice. This serves as a prelude
to the analysis of the method as applied to the tilings of the H¥é" (in section 5) and
7@ (in section 6).

We have implemented these algorithms in Mathematica. Several examples of the
graphical output of these programs are provided as illustrations.
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2. Meyer sets

Let us define the cut and project method for the generation of a quasilatticé. ¢eR”+*
be a lattice with symmetrg and letp,, p, be parallel, orthogonal projections respectively

py iR — R™ pL i R"— RE (N
satisfying

Ker(p)) N L = (0) and p, (L) is dense inR* )
and

p) and p, are G-invariant. 3)

R™ and R¥ are referred to as physical and orthogonal space respectively.P et a
bounded region oR that contains a non-empty open subseR6f Let y € RE. Then we
define the quasilattice (model set) P, y) by

A=A, y):={p®lxeL,pi(x)eP+y} 4

Hereafter we use the notation (x) = x; pi(x) = x*. The subsets oR™ generated by
the cut and project method are examples of Meyer sets [1, 2] to be defined below.

Meyer [1] introduced the concept of harmonious sets in the context of locally compact
Abelian groups. Moody and Patera [2] (see also [3, 4]) used a slightly stronger concept and
restricted themselves to the case of Euclidean sftecoining the term Meyer set. In
this sense, we present here two of the many equivalent definitions of Meyer sets. The first
shows that Meyer sets are generalizations of lattices. The second is the one that is relevant
for our purposes here.

2.1. First definition of a Meyer set

A subsetA c R™ is a Meyer set fff:

(i) it is Delaunay;

(ii) there is a finite sef such thatA — A C A — F.

The second definition involves the duality (reciprocity) theory. SuppgoseR™ is any
subset. We let4] denote the subgroup @™ generated by\. A character, omlgebraic
characteris a homomorphism

x [Al = UQ) :={zeCllz| =1}. (6)

We also cally a character om\ (even thoughA is not itself a group in general). The set
of continuous charactef®” — U (1) are all of the form

Xy P X —> garinx (6)

for somew € R™. The set of all these characters forms the dual gnﬁﬁp The mapping
w —> x, allows us to identifyR™ andR™ if we wish.

Let A C R™ be a Delaunay set. Let be an arbitrary algebraic character anand let
¢ > 0 be arbitrary.x, € R™ is ane-uniform approximation of on A fif,

forall x € A [x.(x) — x(x)| < ¢ e <2 )
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2.2. Second definition of a Meyer set

A Delaunay setA is a Meyer set if and only if for each character: [A] — U(1) and
for eache > 0 there exists am-uniform approximatiory, € R™ of x on A (i depends on
A, x, ande).

Let x(x) = 1 be the trivial character. Fer > O define thes-dual of A by

®)

~ is ae-uniform approximation
A® = {XV-GRmb(M bp }

of the trivial character onA]

Thusy, € A®* & |e2”/iﬁ" —1l <eforallx € A. If A is aMeyer set and < 2, thenA® is
itself a Meyer set iR >~ R” by the natural identification of,, with x. We will illustrate
this fact in an example of the Fibonacci quasilattice in section 4.

In [2], based on the second definition, a method was developed for generating
quasicrystals. We call it theoherent phasemethod. The idea in its simplest formulation
is that although in principle we need to know all af to determineA, in the context
of additional information we may be able to use only finitely many elementa‘ofnd
inequalities such as (7) to correctly decide which of the various points do or do not belong
to A.

3. The coherent phases method

If A is a lattice, then its dual (reciprocal) lattice® can be completely determined by a
finite number of elements aA®, namely a basis ofA°. If A is a quasilattice produced
as the point set arising from the cut and project method, then, under mild assumptions it
can be completely determined by a finite number of elements®pfapproximants of the
algebraic character on A (for somee > 0).

The coherent phases method, in cases of the quasilattices relatectémtimécaltilings
[7], obtained by the projection from the root lattices, transforms the information of the
window and all its substructure into a finite set of continuous characters, an ideal local
configuration, and a starting seed (see below): it eliminates the orthogonal (window)-space
and provides a simple procedure which generates the points of the quasilattice by inspection
of their position in parallel space. The points are obtained in an organized way outward
from the starting seed.

We now define the termamenability starting seedandideal local configuration

Let A ¢ R™ be a quasilattice and lef ¢ R™ be a finite subset. We define an
equivalence relatiorr on A by settingx ~ y if x —y € £S5 and then taking the transitive
closure of this relation, i.ex ~ y if and only if there existxg = x, x1,...,x,-1, X, = y,
all elements ofA, so thaty; —x; ;1 € £Sforalli =0,1,...,n—1. A is weakly amenable
to S if there are only finitely many equivalence classextimelative to~.

Amenability can be seen as another way in which to generalize the finite generation of
a lattice. Suppose that is weakly amenable t§, and suppose thaf C A is a finite set
so that eachx € A is equivalent (under) to some element oK. Then given any point
u € A we can find a path im\ from some pointt € X to u where each step of the path is
obtained by adding or subtracting a vectorSof

We say thatA is (strongly) amenabléo S if X can be chosen so that for eagcle A

we can find a pathg = x, x1, ..., x, = z where:
() xiy1—x,€8,i=0,1,...,n—1;
(ii) xiy1 —xol > [xi —xol, i =0,1,...,n—1.

Effectively the path uses only vectors §fand is outwardly expanding frorX. The
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set X is called thestarting seedand the sefS is called theideal local configuration For
eachz € A we defineS(z) :={s € S|z +s € A}. This is thelocal configurationat z.

Good examples of this occur in the case of quasiperiodic tilihgsf R by convex
tiles. Then the set\ of vertices of the tiling is amenable to the seof all edge vectors.
The finiteness of the sef is guaranteed by the finite number of local configurations.

The concept of amenability was introduced in [2, 3] and a humber of conditions assuring
it were established. In the context of this paper, where we are givea phi®ri existence
of the tilings, amenability is obvious from the remarks we have just made (and, in fact,
would be very hard to establish in any other way). In the casg"®" the edge vectors
fall into a single set of 60 vectors (see section 4). In the casg@®f the set of edge
vectors decomposes into three classes; S, U S, U S, as explained in section 5.

The elements of the method are as follows.

(1) Theideal local configurationis a set of vector§ which serve as the basic generators
for the growth:x; +s = x;41, s € S.

(2) A starting seedX of A from which further growth will proceed.

(3) The generation ogrowth processif z is an existing (already created) point Af
then the set of points = z + s, s € S such that|z +s — xo| > |z — xo|, (in the outward
direction) are newpotential points of A.

(4) The selection processs a decision process (based on a finite sefof, ¢} by
inequalities of the type (7)) which selects from the potential points those that will be
accepted as points af. The rules of the selection process are also callglierent phase
conditions[2—4].

We use the coherent phases method in order to generate the quasilattices corresponding
to the vertices of the tilingg*?" [5] and 7 ?" [6].

4. Generation of the Fibonacci quasilattice by the coherent phases method

In order to illustrate in more detail how the method works, we apply it to the simplest
example, the Fibonacci quasilattice. The Fibonacci quasilattice is defined by the projection
from Z? with the basis{e;,i = 1,2|(¢; - ¢j) = §;} to R! embedded inZ? such that
tang = 1/t where¢ is the angle betweeR* andx-axis of Z?, and the windowP in E; is
an interval of lengthr?K, whereK = 1/t + 2 andr = (14 /5)/2, i.e. A (P = t%K).
(1) The ideal local configuration consists of two short-edge vectdfsand two long-
edge vectorstt K.
(2) The starting seed is one poif@}. Let y = 0.
(4) The algebraic character is chosen to pé&) = 1. The continuous character
X, = € and the inequality of type (7)

xeA if €27 — 1] < 9)
are defined whem is determined. The equation can be rewritten in orthogonal space
eI | < ¢ (10)

since &v1(wx+1") — 11 The left-hand side of inequality (10) defines a functign(x*)

that is periodic in the variable* and the inequality of (10) decomposes orthogonal space
into a set of periodically repeated parallel intervals of which the one containing 0 is to be
our window P. The growth process by short- and long-edge vectors appears in orthogonal
space as steps along (dual) short and long vectors respectively. In order for none of these

1 Note that the normalization of projections (1) and consequently the definition of * are slightly different than in
[2-4].
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Figure 1. The non-overlap condition.

steps, in orthogonal space, to jump from windéwinto one of the parallel repeated copies
of itself, the periodI" of the function f,- (x*) should satisfy theon-overlap condition

T >12K/2+ 1K +1°K/2=1°K (11)
(see figure 1). The restriction with respectutd is
In*l < Bt —HK (12)

and represents the window condition in the dual, reciprocal space. The length of the window
P? is 2K (3t — 4). It is clear thatA® is itself a Meyer set. For any fixed value of allowed
w*, u* € P,

—2mip*x*

le — 1] =2|sinax™ - u*| < e(u®). (13)

The value ofs(u*) can be determined by setting fef its maximal length in the window
P:

2
e(u) =2 sinn%K-mu* . (14)
Hence, the inequality of the type (7) for this case becomes
. 2
xeA 0f T 1 <2 sinn%l{ ut (15)

for u € A®, i.e. u* € P,
(3) In inequality (15), ifz is an existing (already created) point af then the set of
points

xX=z+s s €S ={xK,+tK} (16)

such thafz +s—xo| > |z —xo| are new potential points of to be accepted. The acceptance
condition is

2

Z4seA f |@TE) 1 <2 sinn%K Cwr. 17)
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Figure 2. The window for the tilingZ*?") and the tiles.

5. Generation of the quasilattice related to the tilingZ *?*)

The window P for the tiling 7*? [5,7] and the related quasilattice is the Voronoi cell
of the Dg lattice icosahedrally projected ®,. With the scale, such that the basis 6
is {e;,i =1,...,6|(e; - ¢j) = §;}, the window is a triacontahedron with the edges along
the five-fold direction of edge lengt® = 1/+/2. We denote it byI'®. The tiles of the
tiling 7*?" are six tetrahedra with all edges along the two-fold directions with two lengths,
@ andt(®, @ = +/2K. Their vertices are icosahedrally project®q lattice points, see
figure 2. There is no globally icosahedrally symmetric tiling in the class of the tilings
T*(ZF).

In case of the quasilattice related T6?") we use the following elements.

(1) The chosendeal local configuration

S = {30 edge vector®) and 30 edge vectors®)}. (18)

(2) For thestarting seedof A we only need one point that we put to bg= 0. The
y parameter fromP is chosen so tha$(xg) consists of the 30 edge vector®), i.e. the
y parameter is taken from the coding polytopeAn= T® related to this particular vertex
configuration of the tilingZ*@". For the vertex configurations see [8].

(4) The algebraic character for tiselection processs chosen as

x(x)=1 forall x € A. (29)
The finite set ofA¢ is chosen as follows.
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We denote the icosahedrally projected lattice by F (or 2F)-module [7] or M3; the
icosahedrally projected dual (reciprocal) lattidg by 7-module [7] ong

M3:ZZO[ M2 = {ueZQ[r]al,u-x+u*-x*eZVxeM3} (20)
roots

wherep andx are in parallel spac&, u* andx* are in orthogonal spacg,. From the

non-overlap condition we get the following restriction on the absolute value for allowed

w*’s in orthogonal space in the two-fold directions:

. T4+2
|IL'|<?@- (21)

These restrictions define the windafv=> © in u*—(orthogonal) space, i.e. a quasilattice,
or Meyer set in dual (reciprocal) space, jr(parallel) space (see figure 3). From the
corresponding quasilattice we choose gndor each of the 15 (30) two-fold directions,

such thatu* is small enough. The choice of thés is not unique. However, once chosen
they define both the value efand thes—uniform characterg,. Our chosen representative
" in E” is

uw=02r+1000® (22)
and inE
uw'=(-2000. (23)

For the chosenu* and the window condition we determine theof inequality (7). The
window T©® leads to the value of

b
= 2sin ~ 1.527 24
& —— (24)
for all two-fold directions. The final inequalities, to be checked for allZ8 (1*'s), are
—2mipex o= 2iptey H T
e e — 1] < 2sin 25
| | < — (25)

wherey = 1—14(31: — 3,7t —2,-2r + 3)®. The choice ofy ensures that the starting
configuration is as described in step (2) (see figure 4).

(3) The generation ogrowth processif z is an existing (already created) point af
then the set of points

X=z++s seS (26)
are newpotential points of A. Inequality (25) becomes

e Zrin g 2in'y _ | < 2sin_2

T+2

Potential points that satisfy all 15 distinct conditions of inequalities (27) are accepted. We
generate the quasilattice of the tilifg*?" (see figure 5).

(27)

6. Generation of the quasilattice related to the tilingZ

The Delaunay cells of thég lattice projected tdf, are the acceptance domains for the
quasilattice7 ?") [6, 7]. A dodecahedron of edge length and two icosahedra with edges

(® and (2 are acceptance domains for translationally inequivalent classes of holes of the
lattice Dg. Let us denote representatives in these three classes of holes in six-dimensional
space bya = 5(111113, b = (100000 andc = (1111112, respectively. InE,

there are three globally icosahedrally symmetric tilings seen from the vertices of the type
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Figure 3. Meyer set or quasilattice,\s(T%z(@) in reciprocal spacey-space. The plane of the

figure is orthogonal to a two-fold direction and passes througk 0. The representative
along a two-fold direction is marked.

Figure 4. Vertex configuration of the tilingr =@ corresponding
to the chosen starting seed apcparameter.

a, b andc, respectively. It is these three tilings that we will study here. The tiles of the
tilings are obtuse and acute rhombohedra of the same shape (edge @ngththose of

the primitive tiling, 7% [9], but decorated by the vertices (black circle) ande (white
circle), as in figure 6, and four pyramids, each with base congruent to the rhombus face
of the rhombohedra. The pyramid tops are of typggrey circle) and their side—edges are
either along the five-fold or three-fold directions. The standard length along the three-fold

direction is@ = ,/3(r + 2).

In case of the quasilattice related T8°”) we use the following elements.
(1) Theideal local configurationconsists of all edge vectors of the tilirg®?". It is
given as follows. Each type of hote= a, b andc gets its own ideal local configuration,
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/

Figure 5. Points and edges produced by the coherent phases method in two steps for the
quasilattice related to the tiling ). A five-fold direction (not a symmetry) is marked.

i.e. the pointsy to be tested by an inequality of the type (7) are- z + s,, wheres, € S,

—(B—o

Sa = ‘—%®_® (28)
° T@——0O
@—%@—o

Sy = g_ e ° (29)
©) T(@3 o
o—05B—o

Se=14 o 7(®) O] (30)
o ®—~06

where for example———®———o stands for the 12 edge vectors along five-fold directions
of length ), which lead from a hole of type (z = a) to a hole of typec (z + s, = ¢).
Along three-fold directions we always have 20 edge vectors of the lex@tbst 3. Holes

of type a are black, of typeb are dotted circles, and of typeare white. In the figures the
holes of typeb are grey.

1 In the electronic version of the article, in figures 8, 9 and 10 the holes ofayge black, type are violet and
type ¢ are yellow.
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Figure 6. The windows for the tilingZ7 ?" and the tiles.

(2) The starting seeddor the holes inA of typesa, b andc are given in the figure
captions for the examples of the constructed quasilattices (see figures 8-10).
(4) The choice of thalgebraic characterfor the selection proces$y inequalities of
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Figure 7. Meyer set or quasilattice\® (ball with radiusR = 0.373) in reciprocal spaceu-
space. The plane of the figure is orthogonal to a two-fold direction and passes throudgh
One representative along a three-fold and another along a five-fold directon are marked.

the type (7) depends on which type of hoke=€ a, b, or ¢) is to be tested for acceptance
and on the type of the starting holey(= ao, bo, Or cp)

X (x) = 7o) (31)

where % and x® are the ‘lifted’ points inR® from p andx respectively. In our case will
u® be of typeb (see (35) and (36)). This leads to the following table of values.

ap bo co

xa@ 1 -1 1 (32)
xb) -1 1 -1
xc 1 -1 1

From thenon-overlap conditiorthe restrictions on the absolute value for allowets in
orthogonal space in all three-fold directions are

Il < 21(t + 2@~ 0.398 (33)
and in all five-fold directions
| 2ct ®~ 0373 (34)
< — ~ 0.
H T+2

These restrictions define the window, an icosahedron truncated by the planes of a
dodecahedron (or the other way round) uri-(orthogonal) space, i.e. a quasilattice, or
Meyer set in dual (reciprocal) space. For the purpose of the selection of the pgints

it suffices to approximate the window by a ball with radiusR = 0.373. From the
corresponding quasilattice we choose gndor each of the 20 (10) three-fold directions
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Figure 8. Icosahedrally symmetric quasilattice around a hole of tygpe The corresponding
starting local configuratior$ (bg) are 12 vectors in the five-fold directions of lengil®), and
20 vectorsr (3.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

and oneu for each of the 12 (6) five-fold directions. For convenience we choose them both
to be of typeb. The chosen representatiyein E; along a three-fold direction is

u=j;3<f,:,0>® (35)
and in the five-fold direction
.C3
= ﬁ(la 7,0® (36)

see figure 7. The values efdepend on which type of hole (= a, b or ¢) is to be tested for
acceptance. For the window condition (see the windows in figure 6) and the corresponding
u (see above) we determine thdor the inequality of type (7)

. T
T
&p szﬂ(r 2 0.330 (38)
T
& sin 212 0.530 (39)

In figures 8—10 we present some of the examples of7ifé) quasilattices constructed by
the method. Holes of type are black, of type are grey and of type are white.
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Figure 9. A quasilattice without icosahedral symmetry: the starting seed are two holes, one of
type co and another of typeop.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

7. Conclusion and outlook

We have generated two quasilattices associated with the icosalegiahse by the coherent
phase method in the physical space. The outward growth proceeds along the edge vectors
of the ideal local configuration in the form of vector stars along axes of the icosahedral
group. We determine poin{g in reciprocal space which index the finite set of continuous
characters that are used and give the controlling parametdrsthe first case the growth
propagates along two-fold axes and generates the vertex set of theZiiAQ. In the
second case it propagates along three-fold and five-fold axes and generates the vertex set
(with three types of points) of the tiling ?".

Note that not all the edge vectors of the local configurations used in the growth process
are edges of the tiling, compare with figure 5. For the Penrose quasilattice, de Bruijn
[10] has shown that the vertex set uniquely determines the Penrose tiling. This quasilattice
is obtained by the projection of the holes in the lattitg using as windows irfE; the
orthogonal projected Delaunay cells. In [11] it will be shown that similarly the vertex set of
the tiling 7@ determines the full tiling. The case G is more complicated. There
is the tiling of Mosseri and Sadoc [12] that can be locally derived from the tifirig"

[13]. From the vertex set of the tiling*?", one can reconstruct the Mosseri and Sadoc
tiling, but not the tilingZ*?" itself.

The generation of the canonical quasicrystal tilings by the coherent phase method [2]
should be seen as the first indepth three-dimensional examples of potentially physically
interesting quasicrystals by this new constructive mechanism. What makes the method
quite different from all other established methods (inflation, projection method etc) is that
it is based on the physically observalile(u-)space.
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Figure 10. A quasilattice without icosahedral symmetry: the starting seed is a hole of type

ap. y is small, the corresponding starting configurati§ag) are 12 vectors in the five-fold
directions of length®), the same as in the icosahedrally symmetric case.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)
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Taking into account the size of the windowsiip-space and the shortest vectors of ideal
local configuration inx-space through the non-overlap condition, the method explicitly
yields a window ink,-space. This, in turn, determines a quasilatticejrspace (with
a minimal spacing). Moreover, it is found (in calculations for delta-scatterers all of the
same strength) that thege-vectors correspond to strong Bragg peaks. Trwuasilattice
so defined may then also be a candidate for the discussion of electronic properties of
guasicrystals in terms df-space, see [14] and references therein.

It would be interesting to see the method applied as a constructive formulation for
some atomic models of quasicrystals, for example, the ‘cluster models’, see [15,16] and
references therein. The ideal local configuration could be determined from the suggested
cluster structure iny-space. Thes-values could be calculated from the experimentally
obtained windows i, -space and from a finite set of continuous characters. The latter could
be taken from a set of strong Bragg peaks. One could consiftsgace as a quasilattice,
taking into account both the experimentally defined windows and the shortest distances of
the atoms taken in various (icosahedral) directions. Finally, one could compare this obtained
k-quasilattice with the experimentally observed positions of the strong diffraction peaks.
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